a word from one of our "Best Presentation Award" winners:

Anne Linnet Skelbæk-Pedersen
STAR PhD student
Oral Pilot and Process Development

Novo Nordisk A/S

Spray drying is widely used in pharmaceutical manufacturing to produce microspheres from solutions or suspensions. The mechanical properties of the microspheres are reflected by the morphology formed in the drying process. In suspension drying, solids dissolved in the carrier liquid may form bridges between the suspended primary particles, producing a microsphere structure which is resistant against mechanical loads. Experiments with individual, acoustically levitated droplets were performed to simulate the drying of suspension droplets in a spray drying process.

One of the biggest problems in the manufacturing of high-quality low-dose inhalation products, is dose uniformity of filled capsules [1]. Our approach towards a scientific qualification of dosator nozzles for low-fill weight (1–45 mg) capsule filling comprises a decoupling of the filling process in dynamic and static mode tests, whereas the latter was carried out using a novel filling system, i.e. stand-alone static test tool, developed by us.


1. Introduction

Cold compaction of powder is important for many industrial processes, e.g., for the production of green bodies before sintering of metallic or ceramic parts in mechanical engineering, pellets for mineral or animal food industry or the production of tablets in the pharmaceutical industry. The final powder compact requires a minimum strength as otherwise it would disintegrate during processing, transportation or storage. Experiments can be used to adjust the process to get the desired compact strength. This is time-consuming, as process parameters change often, e.g., the geometry of the machine tools or the powder properties. Hence, reliable numerical models to predict the properties of compacts with simulations are crucial.

Thursday, 22 December 2016 14:50

Control performance of different roll compactors

Written by

Written by Kitti Csordas, early stage researcher in the IPROCOM project



Poly(lactic-co-glycolic acid) (PLGA)-based microparticles offer a great potential as parenteral controlled drug delivery systems [1]. Different types of drug release patterns can be obtained from PLGA microparticles, in particular mono-, bi-, or tri-phasic drug release kinetics. Interestingly, yet the underlying mass transport mechanisms in PLGA microparticles are not fully understood, despite their great practical importance. This can be attributed to the complexity of the involved mass transport mechanisms. The aim of this study was to better understand the mass transport mechanisms controlling drug release from PLGA microparticles. Importantly, new insight was gained based on the experimental monitoring of the swelling kinetics of single microparticles.

Click here to see the full article.

The potential of amorphous solid dispersions to improve the solubility, dissolution rate and bioavailability of poorly water soluble drugs is well known. However, the number of formulations that have made it through to the market is limited because of the unstable nature of the amorphous form, which often results in recrystallization of the drug with the subsequent loss of the solubility and dissolution advantages. Thus, ensuring the stability constitutes a major challenge in the development of amorphous solid dispersions. 

For the first time, an appropriate solid dosage form was developed for a co-amorphous drug-amino acid formulation, demonstrating the high physical stability for the particular system during further processing to tablets and during long-term storage thereof.


We have developed a new technique to better understand what happens to the microstructure inside a tablet during rapid disintegration. 

Page 1 of 2