×

Warning

JUser: :_load: Unable to load user with ID: 861
JUser: :_load: Unable to load user with ID: 1436
Wednesday, 17 June 2015 14:00

Beyond Traditional Disintegration Testing

We have developed a new technique to better understand what happens to the microstructure inside a tablet during rapid disintegration. 

Published in Research Highlights

Background

Terahertz pulsed imaging (TPI) was first introduced in 2007 to non-destructively measure the coating thickness of pharmaceutical tablets. Ever since then, there has been a concerted research effort throughout the PSSRC to further develop and exploit this technique for improving the quality of pharmaceutical coatings and to shed light on the intricacies behind the pharmaceutical tablet coating process.

Published in Research Highlights

Magnetic Resonance Imaging

The use of MRI as a powerful imaging and characterization modality in pharmaceutical dissolution research is now well established [1]. The non-invasive and non-destructive nature of MRI enables the investigation of structural, chemical and dynamical processes in many optically opaque systems at the microscopic level. Spatial maps of water penetration, tablet swelling and dissolution, as well as the mobilization and distribution of drug products can now be quantified and visualized [2,3]. In addition, the hydrodynamics within a USP recommended flow-through dissolution apparatus can also be visualized by MRI [4]. Such comprehensive information is essential in pharmaceutical research for: (i) the correct interpretation of conventional drug dissolution profiles and (ii) the optimal design (QbD) of controlled release formulations.

Published in Research Highlights
Tuesday, 29 January 2013 00:00

Microstructure of Film Coated Tablets

Terahertz Pulsed Imaging

Since 2007 when terahertz pulsed imaging (TPI) was first developed to non-destructively measure the coating thickness of pharmaceutical tablets there has been intense research in the PSSRC into how this technique can help improve the quality of pharmaceutical coatings and thus make controlled release technology based on coatings of single dosage forms attractive to industry.

Published in Research Highlights