×

Warning

JUser: :_load: Unable to load user with ID: 811
JUser: :_load: Unable to load user with ID: 829

Non-linear Optical Imaging

Non-linear optical imaging is an emerging technique for imaging drugs and dosage forms [1]. Non-linear optical imaging may be used for non-destructive, non-contact imaging of solid drugs and dosage forms. It offers chemical and structural specificity with no requirement for labels, sub-micron spatial resolution (inherent confocal nature), rapid video-rate image acquisition, and the ability to image samples in aqueous environments in situ.

These combined features make non-linear optical imaging unique compared to existing imaging approaches in the pharmaceutical setting and make the technique well suited to a wide range of solid-state formulation and drug delivery analyses. These include imaging chemical and solid-state form distributions in dosage forms, drug release and dosage form digestion, and drug and micro/nanoparticle distribution in tissues and within live cells. While non-linear optical imaging is comparatively well established in the biomedical field, pharmaceutical applications of non-linear optical imaging are much less widely explored.

Published in Research Highlights
Monday, 25 February 2013 18:19

Co-Amorphous Drug Delivery Systems

Formulation of co-amorphous drug systems

Using the amorphous form of a drug, instead of its crystalline counterpart is one way to enhance the bioavailability of poorly water-soluble drugs. However, in order to fully benefit from the solubility advantages of amorphous drugs, one needs to overcome phyisco-chemical limitations including poor physical stability associated with the amorphous form. Co-amorphous drug formulations are a novel and one of the most promising formulation approaches in this context, where the drug in its amorphous form is stabilized through strong intermolecular interactions with its co-amorphous low molecular weight partner molecule.

Published in Research Highlights

The major challenge during preformulation is to gain the greatest possible knowledge about candidate drug compounds with minimal use of resources. Therefore, rapid approaches are proposed for identifying critical conditions for existence of various solid forms so that sudden appearance of new forms and unpredictable stability issues can be avoided during later stages of product development.

Published in Research Highlights