×

Warning

JUser: :_load: Unable to load user with ID: 811

The potential of amorphous solid dispersions to improve the solubility, dissolution rate and bioavailability of poorly water soluble drugs is well known. However, the number of formulations that have made it through to the market is limited because of the unstable nature of the amorphous form, which often results in recrystallization of the drug with the subsequent loss of the solubility and dissolution advantages. Thus, ensuring the stability constitutes a major challenge in the development of amorphous solid dispersions. 

Published in Research Highlights
Saturday, 07 September 2013 08:01

Surface characterization of solid dispersions

Background

Solid dispersions are an intensively investigated enabling technology to formulate poorly soluble drugs. Many contributions already studied their higher solubility and resulting dissolution rate as well as the challenges at the level of physical stability due to their high intrinsic energy. Whereas the vast majority of these studies focus on the bulk characteristics of the samples, we are convinced that the (often distinct) properties of the sample surface should not be overlooked.

Published in Research Highlights

Background

The structural and physical stability of solid dispersions have not been adequately explored during post spray drying manufacturing processes. Solid dispersions are preferentially formulated as solid dosage forms such as tablets and capsules. Formulation parameters of spray drying may lead to differences in physical form and amorphous content of solids in single component systems [1]. However, there is limited understanding on the effect of spray drying processes and formulation variables on drug-polymer mixing in solid dispersions and this limitation also extends to the unit operations such as milling and tabletting. The drug-polymer mixing in solid dispersions was evaluated in two different laboratory spray dryers, the Buchi-mini spray dryer and Pro-C-epT Micro spray dryer (Figure 1). The effect of compression on the structural and the physical stability of the spray dried solid dispersions was investigated as a major scope of this study.

Published in Research Highlights

Non-linear Optical Imaging

Non-linear optical imaging is an emerging technique for imaging drugs and dosage forms [1]. Non-linear optical imaging may be used for non-destructive, non-contact imaging of solid drugs and dosage forms. It offers chemical and structural specificity with no requirement for labels, sub-micron spatial resolution (inherent confocal nature), rapid video-rate image acquisition, and the ability to image samples in aqueous environments in situ.

These combined features make non-linear optical imaging unique compared to existing imaging approaches in the pharmaceutical setting and make the technique well suited to a wide range of solid-state formulation and drug delivery analyses. These include imaging chemical and solid-state form distributions in dosage forms, drug release and dosage form digestion, and drug and micro/nanoparticle distribution in tissues and within live cells. While non-linear optical imaging is comparatively well established in the biomedical field, pharmaceutical applications of non-linear optical imaging are much less widely explored.

Published in Research Highlights
Monday, 25 February 2013 18:19

Co-Amorphous Drug Delivery Systems

Formulation of co-amorphous drug systems

Using the amorphous form of a drug, instead of its crystalline counterpart is one way to enhance the bioavailability of poorly water-soluble drugs. However, in order to fully benefit from the solubility advantages of amorphous drugs, one needs to overcome phyisco-chemical limitations including poor physical stability associated with the amorphous form. Co-amorphous drug formulations are a novel and one of the most promising formulation approaches in this context, where the drug in its amorphous form is stabilized through strong intermolecular interactions with its co-amorphous low molecular weight partner molecule.

Published in Research Highlights